
GPO PRICE $ 

CFSTI PRICE(S) $ 2-03 
Hard copy (HC) 

4 

Microfiche (MF) 15 0 
ff 653 July 65 

EQUIVALENT NOISE BANDWIDTH ANALYSIS 
FROM TRANSFER FUNCTIONS 

by Thomas J. Karras 

Goddard Space Flight Center 
Greenbelt, M d. 

NASA TECHNICAL NOTE N A S A  TN D-2842 

N 

m - (THRUI 
(ACCESSION NUMBER) - 

F (CODE) 

z 
P 

i 

t (PAGES) 

CATEGORY) 

2 

(NASA CR OR TMX OR AD N U M B E R )  

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. NOVEMBER 1965 



NASA TN D-2842 

EQUIVALENT NOISE BANDWIDTH ANALYSIS 

FROM TRANSFER FUNCTIONS 

By Thomas J. K a r r a s  

Goddard Space Flight Center  
Greenbelt ,  Md. 

N A T I O N A L  AERONAUTICS AND SPACE ADMINISTRATION 

For sale by the Clearinghouse for Federal Scientific and Technical Information 
Springfield, Virginia 22151 - Price $2.00 



ABSTRACT 

This report clarifies the te rms  "equivalent noise bandwidth" 
(ENBW) , "natural frequency" ( 1 ~ 1 ~ )  , and "3 db bandwidth" ( , i 3 r l b )  , and 
demonstrates the relationships between these te rms  and the network 
transfer function. Two methods for calculating the ENBW from a filter 
transfer function a r e  described. In illustration of these methods, three 
f i l ters  a r e  analyzed. They are:  (1) first order (Type 0) passive low 
pass filter, (2) second order (Type 1) phase lock loop tracking filter, 
and (3) third order (Type 2) phase lock loop tracking filter. Each of 
these fi l ters possesses an attenuation characteristic of -6  db/octave at 

I 10 , o .  A comparison is made of the ENBW for a second order (Type 
1) and third order (Type 2) phase lock loops, as a function of the damp- 
ing factor (; ) . 
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EQUIVALENT NOISE BANDWIDTH ANALYSIS 
FROM TRANSFER FUNCTIONS 

by 
Thomas J. Karras 

Goddard Space Flight Center 

INTRODUCTION 

This report  will clarify the concept of "equivalent noise bandwidth" (ENBW) and its methods of 
computation, given a system transfer function. Several transfer functions of filters will be ana- 
lyzed, leading to  the computation of their  m w  relative to the natural resonant frequency (+,) of 
the filter, and the "3 db down" bandwidth (u3db) . 

If the ENBW of a filter is known, one may compute the signal-to-noise ratio improvement of the 
f i l ter  when used in a system. The use of the mw will be demonstrated by considering the proc- 
essing of pulse frequency modulated data (Reference 1) by use of comb fil ters.  Let a filter within 
the comb be a single-pole band-pass filter with a 3 db bandwidth of 100 cps and let each filter be 
separated by 100 cycles in center frequency from an adjacent filter. Figure 1 shows one such 
filter within the comb filter, used when the data frequencies range between 5 kc and 15 kc. In 
theory, one r e fe r s  to a rectangular f i l ter  which has  the same maximum gain and which passes  the 
same average noise power f rom a white noise source a s  the single pole filter. The bandwidth of 
this ideal rectangular fi l ter  is called i t s  equivalent noise bandwidth. Since the data frequency 
can be between 5 kc and 15 kc, the bandwidth of the noise passing into the comb filter is at least 
10 kc. 

The signal-to-noise improvement of the single pole fi l ter  in this comb filter is found by com- 
puting (S/N) improvement = (S/N)out /(S/N)in. Assuming that the input frequency is at the center 
of the filter (Si, = So), then, the improvement becomes: 

(Sfl)O"t 
(S/N)i, 

noise power input to the comb filter 
= lo 'Og(noise power passing through a single pole filter 

10,000 
= 10 log 

= 18 db improvement. 10,000 cps 
= 10 log Ti 

1 100 cps 

1 



_ _ - _ _ - - -  -- 

3db BW = 100 cps 

- f  
I5 kc I 

Figure 1 -Single pole f i l ter wi th i t s  equivalent 
rectangular f i l ter. 

- 
noise voltage u 2 ,  which is related to the ENBW by 

* 
If the input frequency is offset from the filter 
center frequency, the signal-to-noise ratio . 
improvement becomes less  than +18 db, since 
so < sin along the skirts of the filter. For  
example, the improvement would be +15 db i f  
the input frequency is at the crossover (3 db) 
point. 

Another important use for  the ENBW anal- 
ysis  is in computing the mean-square output 

- 
u2 = (NO/n)Im /H(jo)!' dw = 2N0(BN1) 

0 

where N, is the single sided noise power density spectrum of the noise source in volts2/cycle and 
H( jw) is the network transfer function, and BNI is the one sided normalized E". 

The four basic relationships which can be utilized in solving for  the E N B W  for positive frequen- 
cies (one sided, ENI) given the transfer function of a filter are as follows: 

BN1 = low IH( jm)12 df (cps)  (3) 

These four relationships are applicable when the low frequency o r  high frequency response of 
the f i l ter  possesses 0 db or  unity gain. If the filter possesses a gain K at the low o r  high frequen- 
cies, then Equations 3 through 6 must be divided by ~2 o r  IH( jw) ( 2  with w = 0 or  w = m for  low 
o r  high pass f i l ters  respectively. For  f i l t e rs  possessing a high Q (narrow band pass  filters), then 
Equations 3 to 6 should be divided by the maximum value of H( jo) squared ( IH( j ( t i ) ! i a x )  . This 
means there is a slight difference in the interpretation of the t e rm ENBW for a high o r  low pass 
fi l ter  versus band pass  filters, if the maximum gain of either is other than unity. This is to say  
that the ENBW = BNl,/IH( jo)!inx 

fi l ter .  
for a band pass filter; and the E ~ W  = BN1/1H(jii))2 for  a low pass  

2 



4 

Each of the following fi l ters will  be analyzed for their ENBW: (1) first order  (Type 0)* passive 
low pass fi l ter;  (2) second order (Type 1) phase lock loop tracking filter; and (3) third order  (Type 
2) phase lock loop tracking filter. The ENBW will  be computed by two methods. Method 1 will be 
that of evaluating Equation 6 by calculating the residues of the poles in the upper half plane of the 
transfer function squared ( I H (  ju) I z, . Method 2 will be that of evaluating Equation 5 by the use of 
the table of integrals found in Reference 2. The low frequency gain for each fi l ter  in this report  
is unity o r  0 db; hence, ENBW = EN1 in this report. 

EQUIVALENT NOISE BANDWIDTH ANALYSIS FOR A FIRST ORDER 

(TYPE O] PASSIVE LOW PASS FILTER 

The transfer function for the first order (1 pole), Type 0 (no zero’s) passive low pass  filter 
(shown in Figure 2) is 

where = I/RC (radians per second). 

Computing the 3-db Bandwidth 

The frequency response for this filter is shown i n  
Figure 3. The 3-db bandwidth (w3db) is found by deter- 
mining the value of w where, 20 log I H( j w )  I = -3db ; hence, 

Figure 2-First order (Type 0) passive low 
pass f i l ter. 

and 

therefore, 

w O  1 

d m b =  7T 
and 

Thus, the 3-db bandwidth occurs at w0 for the passive low pass fi l ter .  

*The terms “Type” and “Order” a s  used in this report are defined in Appendix I. 

3 



Figure 3-Frequency response for a first order (Type 0) passive low pass filter showing the ENBW, 
a i 3 d b ,  and ido frequencies. 

Computing the ENBW 

The equivalent noise bandwidth corresponds to a frequency (EN) such that the area under the 
rectangle is equivalent to the area under the H ~ (  j o )  curve (Figure 3) .  

Method 1 :  ENBW Analysis of the First  Order (Type 0) Passive Low Pass Filter 
by Evaluating the Residues. 

From Equation 6, given below 

BN1 l m i H ( j . . ) i 2  dc  (radlsec) 

where H(  J U )  - ~ ~ , , , f L , ,  + jL) , we see  that BN1 becomes, in succession, 

2 
'0 

d o ,  BNl [" (L t (, ; 

4 



1 $ [277j Residues of w in the upper half plane 

The poles of IH( j w )  i occur when U* + w: 0 .  Therefore, the poles a re  w 1  - jw, and 
- .  

L~ -JW,.  We find that by appropriate substitution BN1 becomes 

The residue ~1 is the value of /H( j w )  ! 
(Reference 3), where 

evaluated at the single pole located in the upper half plane 

2 )  w = w ,  

(w - & I I )  

(u - wl)  (w - a I R1 

Therefore, the relation for m1 is now 

77 w O  71 - oo (rad/sec) = 7 (cps) = Tfo ( c p s ) .  

Method 2: ENBW Analysis of the First Order (Type 0) Passive Low Pass Filter 
by Use of the Table of Integrals (Reference 2). 

The integrals to be evaluated in obtaining the ENBW by integration a re  in the form 

5 



t Note that d( S )  has zeros in the left half plane only, and w 2  

Figure 4-Poles of l / f .  t ~ 1 0 2  ). 
the highest power of C ( S )  is at least one degree less than 
the highest power of d( ). 

The integrals which will be used in this report are for N = 1, 2, and 3; these integrals are 
solved with the following algebraic relationships. The solution for higher values of N are given 
in Reference 2.  

c,’ do d, t (c,’ - 2 c o  c,) dod, t c a d ,  d, 

2 )  
N = 3 ,  I, = 2 d o  d, (-do d, + d,  d 

The equivalent noise bandwidth for the passive low pass  filter can be found by using Equations 
5 and 22. Since H ( s )  w , / ( s  + o0) and N 1, the ENBW is as follows: 

Em1 = & LtJm IH( jki) d( jw) cps . 

If IH( jl,) j is an even function of 0 )  (. can be replaced by -0 and the integrand remains the 
same), then EN1 becomes, successively, 

(5) 

6 



m 1  I ( L )  2 2 do d, ' 

where N z- 1 in H ( s )  = m o p  + w0 - c(s)/d(s), and c0 = w0 , d, = 1, do 

see that RN1 reduces to the same form as expressed in Equation 18b. 
L ~ .  From this, we may 

EQUIVALENT NOISE BANDWIDTH ANALYSIS FOR A SECOND ORDER 
[TYPE 1) PHASE LOCK LOOP TRACKING FILTER 

The t ransfer  function for  a second order (2 poles), Type 1 (1 zero) phase lock loop tracking 
filter shown in Figure 5 is 

where o 0  is the natural resonant frequency L O O P  FILTER 

and < Appendix A con- F (s) = - 
tains a d e  v e 1 o p m e n  t of the transfer fclnc- 

T2 5 + 1  is the damping factor. 
PHASE DETECTOR 

tion H( S )  . 07, v.,,,, (t)pl ~7 Bob) 

T o  
e&! The frequency response for t h i s  phase 

lock loop is shown in Figure 6 for < = .707. 

Computing the 3-db Bandwidth 
Figure 5-Second order (Type 1)  phase lock loop 

tracking f i l ter. The 3-db bandwidth ( u 3 d h )  can be found 
by finding the value of for which 

20 log / H ( j w ) (  = -3 db , 

so that 

Therefore, we obtain the expression 

A typical phase lock loop has a damping factor of 5 = .707, for which case Equation 29 reduces 
to 

7 



W - 
0 0  

Figure 6-Frequency response of a second order (Type 1 )  phase lock loop trackir 7lter showing 
the ENBW, w~~~ , and o,, frequencies. 

W 3 d b  4 - 4wo'w,2db - w; = 0 .  

The 3-db bandwidth can be shown to be 0 3 d b  = 2.06 W o  ! < = .  7 0 7  . The three other roots a re  
inapplicable. 

Computing the ENBW 

Method 1 :  ENBW Analysis of the Second Order (Type 1) Phase Lock LOOP 
by Evaluating the Residues 

From Equation 6, given below, 

with 

6 = .  7 0 7  

a 



. 
$he ENBW for 5 = 0.707 is found to be from Appendix B: 

3 
BN1 = ;i- )P nuo 

= 3.33  wo ( rad /sec)  

= 3.33 f ,  ( cps )  

= 0.531 wo ( cps )  . 

Method 2: ENBW Analysis of the Second Order (Type 1) Phase Lock Loop 
by use of the Table of Integrals 

From the general relationship found for the ENBW (see Appendix B) where 

one can plot the ENBW as a function of 5 for W ,  = 1 (Figure 7). Analysis of Figure 7 indicates that 

1.4 

1 .2  

1 .o 

- .a 

z 
Y % - 

.6 

.4 

. 2  

.2 .4 .6 .8 1 .o 1 . 2  1.4 1 .6 1.8 2 

DAMPING FACTOR 5 

Figure 7-Plot of the equivalent noise bandwidth (one-sided) for the second 
order (Type 1 )  phase lock loop trocking f i l ter. 
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systems with low damping factors have large noise bandwidths. For large damping factors, the . 
ENEW increases in direct proportion to the damping factor (EN1 = 5/2  fo r  large < ). The minimum 
ENBW occurs at [ =  0 .5,  ENI m i n  = 0 . 5  oo (cps). 

I 
/ E N 2  = 2BN I 

A Two Sided ENBW for the Second Order [Type 1) Phase 
Lock Loop Tracking Filter 

\ ~ 6 . 6 6 ~ 0  
= ,707 

It would be appropriate a t  this time to introduce the concept of the two sided ENBW (BN2)  Using 
the tracking filter as an example. 

The d-c component or  low frequency of the phase lock loop is truly offset to the frequency Of 

the VCO. The VCO can track a frequency in the range f V C O L  t o  fvco,,) and while resting at any 
particular frequency in this range, has the frequency response. 

( 

centered around the resting frequency. This is shown in Figure 8. 

The phase lock loop actually responds to changes of frequencies both above and below the fre- 
quency of the VCO (positive and negative frequencies), resulting in a two-sided tracking filter, 
shown in Figure 9. 

The reason for this two sided tracking bandwidth for a phase lock loop can be seen by examin- 
ing the e r ror  signal appearing at the phase detector output, as illustrated by the block diagram in 
Figure 10. 

The phase detector is functioning as a multiplier; hence, the e r r o r  signal appearing at the 
output of the phase detector is 

1 I ( =  .707 

Figure 8-One-sided tracking bandwidth. 

+hw (radlsec) I \  I 
-hw (rad/sec) / 

I 
/ 

Figure 9-Two-sided tracking bandwidth. 
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O,"(t) = E,,sin [ w , t +  !ll(t)] f"col f K O C  f':% 

BN2 = 2BN 1 BN2 = 2BN 1 BN2 = 2BN 1 FILTER 

- A w  t A w  -Ao + A w  -Aw +Aw 

Figure 10-Phase lock loop tracking f i l ter. p-TRACKING RANGE-4 
Figure 1 1 -ENBW (two-sided) equivalent response 

for a phase lock loop tracking f i l ter. From Appendix C, we see (Equations C5 and C6) 
that 

where &t = e , ( t )  - Ovco(t), and sin Awt = i h t  for small ht. 

If 0, (t ) > evco( t ) , then L h  is positive, and if  8, ( t  ) < Ovco( t ), then is negative. When LL 

is positive, it causes the VCO to oscillate at a frequency higher than i ts  center frequency. 

Hence, the total equivalent noise bandwidth of a phase lock loop is twice the one sided equiva- 
lent noise bandwidth o r  6.66 wo 1 < = .707 for the second order (Type 1) phase lock loop tracking 
filter (Figure 11). 

EQUIVALENT NOISE BANDWIDTH ANALYSIS FOR A THIRD ORDER 
[TYPE 21 PHASE LOCK LOOP TRACKING FILTER 

The t ransfer  function for  a typical third order (3 poles), Type 2 (2 zeros) p..ase lock loop 
tracking filter (Reference 4) shown in Figure 12 is (from Equation Dg), 

Appendix D contains the development of the transfer function H ( s ) .  

The frequency response of the third order (Type 2) phase lock loop tracking filter is shown 
in Figure 13. 

11 



K vco 
S T o  

- -  Verror ,,) WE0 K +  

0 

Figure 12-Third order (Type 2) phase lock loop tracking f i l ter 

A1 + A 2  = A 3  

--D 

0 - 
00 

Figure 13-Frequency response of a third order (Type 2) phase lock loop tracking f i l ter showing 
equivalent noise bandwidth, d b ,  and w o  frequencies. 

Computing the 3-db Bandwidth 

The 3 db bandwidth ( w ~ ~ ~ , )  can be found by finding the value of (i! for which 
20  lo^ lH( I -3tlb. 

12 



This reduces to: 

resulting in C I ' ~ ~ ~  = 2 . 8 3  "lo. 

Computing the ENBW 

The FMW, as developed in Appendix E, was found from Equation E l l  to be (for K = 9/4wo) 

BN1 = 4 . 6 8  w0 (rad/sec) = 0.743 w0 (cps). 

The general expression computed for the ENBW is (Equation E16) 

BN1 = 3/4 (6-wo/K) c'" + wo) 1 
Figure 14 is a plot of the ENBW for the third order (Type 2) phase lock loop of 

mi = (314) [ ( 2 ~  t w0),/(6 - (i.O/K)] with w0 = 1. The minimum ENE3W occurs at a value of K = .5 
(cps), resulting in the minimum NW of 0.375 (cps). 

5 

K ( C P ~  

Figure 14-Plot of the equivalent noise bandwidth (one-sided) for the third order 
(Type 2 )  phase lock loop tracking f i l ter. 

13 



COMPARISON OF THE ENBW FOR THE SECOND ORDER (TYPE 1) AND 
THIRD ORDER [TYPE 2)  PHASE LOCK LOOP TRACKING FILTERS 

By examining the general transfer function of the third order system, 

K ( s  + $)’ 
H ( s )  = 

2 b O  
s 3  t K s 2  f3 s + K(?)’ 

a direct comparison with the second order system, where 

23w0 s t 
H ( s )  = 

s2 f 25w0 s .t 0,’ 

is not possible since a damping factor term does not naturally appear in the cubic equation of the 
third order system. 

The ENBW for the second order system w a s  shown to be a function of 3 and mo,  while the ENBW 

for the third order system w a s  shown to be a function of ~ ( c p s  o r  rad/sec) and 

If w e  let K = 9 0 ~ 0 / 4  in the third order system, the transfer function becomes 

Examining the denominator term and equating i t  to the general denominator te rm for the second 
order system (s’ + 25w0 s t w;) 

to < 1 when K = 9w0/4 for the third order system. Hence, by allowing K to vary from 0 to 9w0/4  , 
and computing the roots of the cubic equation to obtain the damping factor 5 , it will then be possible 
to compare the E N B W  for the second and third order systems. 

, we find that the term in the 2nd order factor which is analogous 

Appendix F is a development of the equations necessary to compute 5 for each value of K in 
the third order system. Figure 15 represents a comparison of the ENBW for the second order 
(Type 1) and third order (Type 2) phase lock loop tracking fi l ters for w 0  = 1. 

TABULATION OF THE RESULTS FOR ENBW, mo, AND O j d b  BANDWIDTHS 

Table 1 below summarizes the results for the mw, c,,o , and W 3 , , h  relationships for the first 
order (Type 0)) second order (Type 1)) and third order  (Type 2) fi l ters.  Each fi l ter  has an attenua- 
tion characteristic at b-, of - 6  db/octave. 

14 



0 

Fi l te r  

F i r s t  Orde r  (Type 0) 

Second Orde r  (Type 1) F o r  5 = .707 

Third Orde r  (Type 2) For K = 9 ~ ~ 1 4 .  5 = 1 

DAMPING FACTOR 5 

EN BW (One Sided) 3 db  bandwidth 
(rad/sec) (rad/ se c) (CPS) 

1.57d0 .25 wo ‘do 

3 . 3 3 ~ ~  .531 wo 2.06 k o  

4 . 6 8 0 ~  .743 L~ 2.83 c L 0  

Figure 15-Comparison of the ENBW (one-sided) for the second order (Type 1 )  and third order (Type 2) 
phase lock loop tracking filters for w0 = 1 rad/sec. 

Table 1 

Comparison of ENBW and 3-db Bandwidth for F i rs t ,  Second, and Third Orde r  F i l t e r s ,  

SUMMARY 

The concept of the equivalent noise bandwidth (ENBW) and its relationship to the natural fre- 
quency (w0) and the 3 db bandwidth of several types of f i l ters  have been discussed. Computation 
of f i l ter  m w  by evaluating an integral with special tables of integrals (Method 2) is fast and 
simple. An alternative method is by computing the sum of the residues of the ENRW integral. 

In comparing the ENBW of the second order (Type 1) and third order (Type 2) phase lock loop 
tracking filters (Figure 15), it is seen that for practical values of the damping factor ( i )  the E ~ W  

15 



b 

fo r  a third order (Type 2) system is normally greater (for the same ~ j , , )  than the 
second order (Type 1) phase lock loop tracking filter. Hence, the signal-to-noise improvement 
will be better when using the second order (Type 1) system. However, the tracking rate will be 
improved i n  the case of the third order system (see Appendix H). 

for the 
' 
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Appendix A 

Development of the Transfer Function for the  Second Order (Type 1) 
Phase Lock Loop Tracking Filter 

The standard configuration for a servo system is shown in Figure A1 and has a transfer 
function of 

Hence, for Figure 5, H ' ( s )  = 1 and 

where T, = (R, f R2)C,,T2 = R2C, and K = K+ K,,, 

Therefore, the transfer function becomes, successively, 

K(T,S t 1) 
s (T,s + 1) 

' s ( T l s  + 1) 
H ( s )  = K(T,s + 1) ' 

K(T,S t 1) 
s (T,s + 1) 

' s ( T l s  + 1) 
H ( s )  = K(T,s + 1) ' 

and 

T,K 
H ( s )  E - 

17 



In actual practice, KT, >> 1, so that the transfer function is 

for  2&, = KT,/T, and u,' = K/T, . If we combine Equation 27 

and Equation A l ,  

G ( s >  
H ( s )  = 1+co 

we find that the open loop transfer function C( S )  becomes (Figure A2) 

Figure A1 -Standard configuration for a Figure A2-Simplified second order phase lock loop 
servo system. tracking f i l ter .  

. 

18 



Appendix B 

Computations tor the ENBW for  the Second Order (Type 1) 

Phase Lock Loop Tracking Filter 

Method 1 :  ENBW Analysis of the Second Order (Type 1 )  Phase Lock Loop by 
Evaluating the Residues 

From Equation 6, we see that m1 is, successively, 

BN1 = 5,’ lH( ju) 1 ’  ds (rad/sec) , 

EN1 = Irn 
=1 w; (w0” + 452 0 2 )  & 

w4 t (452  wgz - 200”) J + 0,“ 

A typical compromise for minimum m w  and minimum transient time response for a phase 
lock loop occurs when 5 = 0.707. Therefore, 

The four roots of w (poles of /H( ju) 1 *) a re  (Figure Bl) :  
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0 3  

Figure B1-Poles of l / (w4 t "04) 

w4 

Since the degree of the denominator of / H (  j w )  1 is twice the degree of the numerator, each 
residue can be evaluated by taking the derivative of the denominator (Reference 3) and evaluating 
the residue for each pole in the upper half plane. 

BN1 = $ [277i Residues of w1 and ( z j 2  , 1 

rad 
= 3 . 3 3  w0 (.;;.) ' 

3 
= fi w 0  = ,531 U J ~  (cps)  . 

Method 2: ENBW Analysis of the Second Order (Type I) Phase Lock Loop by 
use of the Table of Integrals 

Since Equation 27 gives the transfer function as 

we may set  N 

fo r  < I ( \ )  i n  Equation 2 1 ~ .  From Equation 5, we see that BN1 
2 in the series expression fo r  C ( S )  in Equation 21b and in the series expression 

is, successively, 
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1 
= 3- (12) ' 

1 c ? d O  + c:d2 
- 2 2 do d,  d, ' 
- -  

where c1 = 25w0,  c0 - 2  - w0 , d, = 1 ,  d, = 2 5 u 0 ,  and do = w:. Therefore, 

For a damping factor of 3 = .707, the ENBW may be expressed by 

(E3141 3 
BN1 = 8 f l u o  = ,531 wo ( c p s )  , 

= 3 .33  uo ( r ad / sec )  . (B15) 

This agrees with the method of evaluating residues; however, as can be seen, much computation 
time is saved by using method 2 instead of method 1. 
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Appendix C 

Analysis of the Two Sided ENBW for a Phase Lock Loop Tracking Filter 

The phase detector in Figure 9 is functioning as a multiplier, hence, the e r ro r  signal appear- 
ing at the output of the phase detector is (from Equation 34) 

From the trigonometric identity s i n  ( X  y) = s i n  x C O S  y i C O S  x s i n y ,  it follows that 

s i n  (x + y )  + s i n  (x - y )  
2 s i n x  c o s y  = 

Lettingx = w c t  + s , ( t )  , and y = ut + B v c o ( t ) ,  we maythenexpress  V , ( t )  by 

Assuming that the hC t term is negligible since it is filtered out by the loop filter, v, ( t ) 
becomes 

Again, assuming that the system is tracking near phase, the difference angle is normally small, 
and since s i n  0 2 8 for small  angles, w e  find that 

If O , ( t )  > o v c 0 ( t ) ,  then h t  is positive, and if  e , ( t )  < B v c 0 ( t )  , then h t  is negative. 
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The output of the phase detector is a dc voltage that varies with the phase difference between 
the input and reference signals. The transfer function for the phase detector is shown in Figure 61. 

As the phase difference varies from 0 to n, o r  71 to 2 n ,  the voltage will go through its full 
range. The phase lock loop will only stay in lock between 0 and n (or n and 2n) phase difference 
points. Usually the phase lock loop is designed so that the center frequency lies at n / 2  phase 
difference point. Therefore, the feedback frequency will be lagging the input-signal frequency by 
90 degrees. 

The transfer function of the VCO is shown in Figure C2. The dc level at the input of the VCO 
sets the output frequency. With no dc input signal (ground), the oscillator can be designed to 
operate at the system’s center frequency. 

VOLTAGE 

XI 

- A w t  +hot 

x 2  

n 
\ 
\ 

\ 
\ 

\ 
I ‘\ PHASE ANGLE ’ 3/2n \ \ 

\ 

\ 
\ 

1 3 5 O  \ 

I 
OPERATING RANGE -Dct GENERALLY n/2 

Figure C1 -Phase detector transfer function. 

I 
- A w  +Aw I 

I I 0 I - - 
i 

Figure C2-VCO transfer function. 



Appendix D 

Development of the Transfer Function for the Third Order [Type 2) 
Phase Lock Loop Tracking Filter 

As in the second order (Type 2) phase 'lock loop (see Figure Al), the transfer function is 

G ( s )  H ( s )  = 
1 + G ( s )  H ' ( s )  ' 

where H ' ( s )  = 1. From Figure 12, G ( s j  becomes 

G ( s )  = 

where T, = (R1 t R,)C, , T, = R, C1,  T, = GR, C, ,  and T, = R, C, . Hence the transfer function 
is now 

Takin ctical case whe 

GK+ Kvco T,s + 1 T,s + 1 
S ( T l s  + 1) (T,s + 1) ' 

H ( s )  = 

e R, c, = R, c, = 3/w0, and 

we find that the transfer function may be now written 
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Taking the typical case where, K = 9w0/4  we may see that 

2 

9w0/4  (s + ;) 
(s + wo)2  (s + :) H ( s )  = 

By equating Equations D1 and D7, 

and the open loop transfer function C ( S )  becomes (Figure Dl) :  

2 

9w0/4 (s  t?) 
C(S) = s3 

-' Figure D1 -Simplified third order phase lock loop 
tracking f i l ter. 
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Appendix E 

Computations for the  ENBW for the Third Order [Type 2) 

Phase Lock Loop Tracking Filter 

Method 1 :  ENBW Analysis of the Third Order (Type 2) Phase Lock Loop Tracking Filter by 
Evaluating the Residues 

From Equation 6, we saw that mi is, successively, 

BNl = I,’ lH(jw)I2 dw (rad/sec) , 

1 81 w t  
= 7 [ k i  Residues 

The s ix  roots of w (poles of IH( j w )  I ) are (Figure El):  

1 w = +jw, (multiple poles) , 3 

w4 = -jwo (multiple poles) . 

Therefore, the mw is 
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. 

MULTIPLE POLES 

-1 
2 

Figure E l  -Poles of [(% + w2) (ut + u2) ’1 

81 

where for a simple pole R 1  is, 

Since R 3  contains multiple poles, it is 
found by the following analysis (Reference 3).  
Its  f i rs t  derivative is 

where R 3  d/& ( R ’ 3 ) ! w , , w  for multiple poles. Thus, we have 

which reduces to R 3  = t. 2 8 9 / j w 0 .  Therefore the ENBW becomes, after evaluating residues, 

Hence, the two sided equivalent noise bandwidth for the third order (Type 2) phase lock loop 
tracking filter is 
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Methid 2: ENBW Analysis of the Third Order (Type 2) Phase Lock Loop Tracking Fil ter  by 
Use of the Table of Integrals * 

The general form of the transfer function for the third order  (Type 2) system was  shown to be 
(Equation 41) 

K s  (t :r 
H ( s )  

s 3  + Ks2 + 2K(:)i t K(:T 

From Equations 5, 23, and 25, we find that B N ~  is, successively, 

K2 

2 ( 1 3 )  ’ 

, 0314) 
[“do  d,  + (c,’ - 2c0 c 2 ) d 0  d, t c,’ d, 

2 do d, (-do d3 dld2) 

since N - 3 for H ( J o J ) ,  and where C, = 1 ,  c1 = 2/3 m 0 ,  c 0  - 0,’/9 , d, = 1, d, 

and do - ~ : / 9 .  From this we see that 
K ,  d, 2Kw0/3, 

and for K = 9m0/4, the ENBW becomes, finally, BN1 

agrees  with the results computed by Method 1. 
,743 oo (cps) = 4.68 wo (rad/sec). This 
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Appendix F 

Determining the Relationship Between the Gain Factor (K) and the Damping Factor ( 5  1 
for the  Third Order (Type 2) Phase Lock Loop Tracking Filter 

By examining the factors of the quadratic equation s2 t 2 r , ( , ~ , ~  t .,: = o , one finds that 
s = -cw, f wo 

Plotting the roots of the quadratic equation in the S plane (see Figure F1) allows one to describe 
the damping factor r, (for o <- 5 <- 1, W ,  i G  becomes jw, i n ) .  The damping factor is 
seen to be 5 = C O S  0 .  Hence when B = Oo, maximum damping results since < = 1, and when 
B = 90" , no damping results since < = 0 ,  and oscillatory motion occurs. 

or i t s  factors a re  s t cw0 t oo i R )  and (. t iw0 - wo im). ( 

The physical significance of the damping factor 5 can be seen by taking the inverse Laplace 
transform ( L - ~  ) of the quadratic equation 

This results in a n  exponential damped sinusoidal function with the damping controlled by 5 and 
w 0 ,  so that 

When r, = 0 ,  

wo s i n  w, t 
1 

L-' (2 t = 

5 PLANE with no damping of the sinusoidal function. 

for each K 
value of the third order system, the denomi- 

X 
I 
I To determine the value of r, +.,J;--z" I 

era1 cubic equation of the form -.,m ' I 
I 

nator te rm of H( ) can be solved in the gen- I 

I 
X 

y3 t py2 t qy + r = 0 .  (F4) 

The general cubic equatipn may be reduced to Figure F1-Polesof l/(s2 t 25w,s + b.:). 
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the form x 3  + ax + b = 0 by substituting for y the value, x - ~ / 3 .  Here, a = ( 1 / 3 ) ( s q  - p z )  and, 
b (1/27)(2p3 - 9pq + 2 7 r ) .  For solution, 

and 

The values of y w i l l  then be given by Equations F7, F8 and F9 if b2/4 t a3/27 2 o : 

Y1 = A + B -5 

y 2  = -(+ t3) t(+)m , 

y 3  

If b2/4  + a3/27 < 0,  compute the value of the angle 4 in the expression 

-b/2 
i=7iT cos 4 = 

Then, y will have the following values: 

a P  
Y 1  

Y, = 2 f l C O S  (! + 120.) -3 P 

The denominator term of H ( ~ )  for  the third order  system, with &J,, = 1 , is 

s 3  + K s 2  + T K s  2 + q  K = 0 , 

where p K ,  q - 2 / 3  K ,  and r K / 9  in the cubic form. 
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Therefore, a = ( K / 3 ) ( 2  - K ) ,  and 0 

For the case when K = 9/4 , the cubic equation reduces to ( s *  + 2s + 1) ( s + 1/4) = 0 

( K / 2 7 ) ( 2 K 2  - 6 K  + 3 ) .  

where 
5 = 1 when w0 = 1. For values of K less than 9/4, there will be a corresponding value for ( . 
Each value of 5 was found by programming 
the Equations F15, F16 and F17 on a computer 
and c o m p u t i n g  5 for a range of K values. 
Figure 15 represents a comparison of the 
ENBW for the second order (Type 1) and third 
order (Type 2) phase lock loop tracking filter 
for w,, = 1. Table F1 contains the results of 
solving the equivalent damping factor 5 for 
different values of K .  

For the cubic equation s 3  + K S ~  + 2 K s / 3  

+ ~ / 9  = 0 , the roots a r e  

s *  - ( A  '2 t:) t (q) fi (F16) 

By letting C = A + B / 2  t K / 3  , F = A + B - K / 3 ,  

andD = ( A  - B/2)  fl, the cubic equation was 
solved and can be put in the form of 

Figure F2 shows the equivalent yalue for the 
damping factor 5 (where 5 = C O S  0). 

Table F1* 

Tabulation of Values for  K and 5 for the Third Order  
(Type 2) Phase Lock Loop Tracking Fi l te r  

K 

.1 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2 .o 
2.1 
2.2 
2.25 

5 

.09157 

.03757 

.13432 

.21417 

.28373 

.34612 

.40314 

.45594 

.50534 

.55190 

.59606 

.63815 

.67843 

.71711 

.75437 

.79035 

.82517 

.85894 

.89174 

.92397 

.95476 

.98510 
1.00000 

'By the use of this table and Figure 14, Figure 1 5  was plotredfor 
the 3rd order system. 

Figure F2-Poles of l / ( s 3  + K s 2  + 2 K s / 3  + K,/9) .  
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Appendix G 

Computations for the ENBW of a Single Pole Band Pass Filter 

The transfer function for a single pole band pass filter (in Figure G1) can be shown to be 

By making the following substitutions, 

and by defining f f d b  as the 3 db down bandwidth (cps), the transfer function becomes 
I 

A frequency response for this filter is shown in Figure G2. 

The ENBW is computed by Method 2 of this report, and we find that 

or  

where 

c l 2 d 0  + c;d2 

I2 = do dl d2 
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1 
K - - - - -  

E I n  (4 E o ( s )  ~ ( j u )  

Figure G1 -Single pole band-pass f i l ter. w- 
W O  

u (rad/sec) 

0 

/ 
with Figure G2-Frequency response of a single pole 

band pass f i l ter. 

1 1 
d, = d, = 

4rr2 f:,, Q2 ’ 2~ f,,, Q2 ’ 

Therefore, I, reduces to the simple expression 

and IH(  ju )  l m s x  occurs wh n = i/dC. One can show, therefore, 

IH(ju>lf., = K’ . 

Finally, the FNBW becomes upon substitution and reduction, 

do = 1 .  I 
ha 
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Appendix H 

Comparison of the Tracking Rate for the Second Order (Type 11 
and Third Order (Type 21 Phase Lock Loop Tracking Filters 

I From the standard configuration for a servo system (shown in Figure Hl), an expression for 
the phase e r ro r  signal e , ( s )  is found by the following equations: 

e , ( s )  = O , , ( s >  - O O ( S )  , (HI) 

I Since e,( S )  represents the phase e r r o r  corresponding to  the phase difference (radians) be- 
tween the input and output frequencies of the phase lock loop, it is desirable to determine a 
relationship between the phase e r ro r  and the change of input frequency (radians/second). Since 
B(radians) = Jodt or  w = dO/dt , Figure H1 can be drawn as shown in Figure H2. 

, 

From this relationship we may see  that 

and 

Figure H1 -Standard configuration for a servo system 
with unity feedback. 

Figure H2-Conversion of a phase input to a frequency 
input for the phase lock loop. 
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so we may make one further substitution so that 

n",'"' [I. - H ( s ) ] .  

It is now desirable to  compute the tracking rate of a phase lock loop by assuming a ramp input 
frequency (acceleration in phase). Hence, let 

where c, is the slope of the ramp input frequency in radians/second/second. Therefore, a gen- 
eral  expression for the phase e r r o r  in te rms  of the input tracking rate c, becomes 

It will  be assumed that the maximum phase e r r o r  which the phase lock loop can tolerate be- 
fore "dropping-out-of-lock" wi l l  be n/4 radians, shown in the following analysis. 

Second Order (Type 1 )  Tracking Rate Analysis For a Ramp Inwt Frequency 

The transfer function for the second order system w a s  shown to be (from Equation 27) 

25w0s + w,' 

s2 f 25w0s f w,' 
H ( s )  ' 

Therefore the phase error for a ramp input frequency becomes, successively, 
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where ' 

R 
-5 + = tan-'  

It can be shown that B E ( t ) m a x  occurs at t = 0 ,  so that for 5 = .707. 

2 c  

and cu becomes 

71 
Cw = 5 w; radians/second/second 

Since col = 271 c, , we now find that 

1 - c, = 16 (io2 cycles/'second/second , 

and since for 5 = .707, 

BN1 = .531  w o  (cps) , 

the tracking rate becomes 

C ,  = ,222 BNlz cycles/second/second. 

Third Order (Type 2) Tracking Rate Analysis f o r  a Ramp Input Frequency 

The t ransfer  function for  the third order system was shown to be (from Equation 37) 

Therefore,  the phase e r r o r  for  a ramp input frequency becomes, in succession, 
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r 1 

(H20 j 

where 

By differentiating the expression for  o,( t )  and equating the derivative to zero results in 

Hence, equating this maximum phase e r ro r  to the maximum tolerable phase e r ro r  of n / 4  radians, 
the tracking rate becomes 

or  

Since BN1 ,743 oj0 (cps) the tracking rate becomes 

C, - . 41  BN12 cycles/second/second . 0328) 

Hence, the third order (Type 2) system can track an input ramp frequency 1.85 times that Of a 
second order (Type 1) system having the same ENBW and a 5 = .707. 
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Appendix I 

List of Symbols and Definitions 

BN1 

EN2 

ENBW for  positive frequencies (w > wo) . 
ENBW for  positive and negative frequencies (-w 5 w0 2 +w) . 
Capacitance of first order filter. 

Tracking rate  in cycles/second per second. 

Tracking rate in radians/second per  second. 

A capacitor in the passive loop fi l ter  of a second o r  third order  phase lock loop 
tracking filter. 

A capacitor in the active loop filter of a third order phase lock loop tracking filter. 

Constant coefficients of the numerator of the transfer function H( s )  . 
Series of the form c ~ - ~  SN-' t 

Constant coefficients of the denominator of the transfer function H( s )  . 
Series of the form dN-l sN + ......--.- f do. 

Equivalent noise bandwidth - the bandwidth of an ideal rectangular fi l ter  which 
passes  the same average noise power from a white noise source as the single 
pole filter. 

Laplace transform of the voltage input to the phase lock loop. 

Laplace transform of the voltage output from the phase lock loop. 

DC gain of the amplifier in the passive loop filter. 

Open loop transfer function. 

Network transfer function. 

Closed loop transfer function. 

Transfer function of the feedback network. 

Integral which is evaluated to determine ENBW. 

Poles of IH( jw) I 2, equal to w1 and . 
Filter gain. 

Transfer function of the voltage controlled oscillator. 

Single sided noise power density spectrum of the noise source in volts2/cycle. 

+ co.  
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Ordr r  The highest degree of the denominator term of the closed loop transfer function 
H( s ). 

The root of the denominator term of H ( s )  = c(  s)/d( s )  . 
Series resistance of first order filter. 

Pole 

R 

R 1  Residue of o (Pole of IH( J G  ) I  '). 
R 3  

R ' 3  Residue of r113 (pole of / H (  j.1) 1 ). 

Residue of c A 3  for  multiple poles of ~ H ( J U ) / '  d / h  ( R ' 3 ) I w = , w 3  . 

Resistors in  the passive loop filter of a second or  third order phase lock loop 
tracking filter. 

Resistors i n  the active loop filter of a third order phase lock loop tracking fi l ter .  

R l '  R2 

R 3 '  R4  

S Frequency i n  radians/second, where s = IU. 

s n Irnprovvmcmt The ratio of (S/N)oU, to ( S D ) , ,  , equal to the log of the ratio between the noise 
power input to the comb filter and the noise power passing through a single pole 
filter, multiplied by 10. 

Time constants of the passive loop filter. T, 

Time constants of the active loop filter. T, cR3c2 , T 4  R4C2.  

The highest degree of the numerator te rm of the closed loop transfer function H( s ) .  

Voltage controlled oscillator. 

Error  signal at the output of the phase detector. 

The root of the numerator term of H( s )  

Gain constant of the passive loop filter, where (11 = (RI  

Gain constant of the active loop filter, where a2 = R3/R4.  

Difference between the input and output frequencies of the phase lock loop in 
radians/second. 

Input signal to the phase lock loop in radians/second. 

Natural damping factor of the phase lock loop. 

The inverse cosine of the damping factor 0 = c0s-l 5 

Laplace transform of the input signal to the phase lock loop (radians). 

Laplace transform of the output signal to the phase lock loop (radians). 

Laplace transform of the phase e r r o r  corresponding to the phase difference in 
radians between the input and output frequencies of the phase lock loop. 

Input signal to the phase lock loop, in radians. 

Output signal f rom the phase lock loop, in radians. 

Input phase deviation signal to the phase lock loop. 

Output phase deviation signal of the phase lock loop. 

Cl (R1 + R 2 ) ,  T2 = R2C1. 

c(  s) /d(  s )  . 
R , ) / R , .  

. 



e 
- 
D 2  

$ 

w Signal frequency. 

w O  

Mean-square output noise voltage equal to No/n J"lH( j w )  l 2  &. 
Static phase shift (radians), equal to tan-' (1 - c 2 )  l'yc. 

0 

Filter natural resonant frequency. 

Filter bandwidth measured at 3 db points. W 3 d b  

0 1  I w2 I w3 > 0 4  Roots of (Poles Of (H( j w )  I ). 
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